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Abstract. I use U.S. manufacturing industry data to estimate a system of three equa-
tions implied by a model of R&D-induced growth in steady state. These equations relate
R&D intensity to patenting, patenting to technological progress, and technological
progress to economic growth. In each case, I find evidence of positive impact. Thus, I
reject the null hypothesis that growth is not induced by R&D in favour of the
Schumpeterian endogenous growth framework without scale effects. I also find strong
support for technological spillovers from aggregate research intensity to industry-level
innovation success. JEL Classification: O40, O30

R&D, innovation, et progrès technologique: un test du cadre schumpétérien en l’absence-
d’effets d’échelle. L’auteur utilise des données de l’industrie manufacturière pour
calibrer un système de trois équations émergeant d’un modèle de croissance en régime
permanent induite par le R&D. Ces équations relient l’intensité de R&D à l’obtention
de brevets, l’obtention de brevets au progrès technologique, et le progrès technologique
à la croissance économique. Dans chaque cas, on trouve un impact positif. En consé-
quence, l’auteur rejette l’hypothèse nulle que la croissance n’est pas engendrée par le
R&D en faveur de l’hypothèse de croissance endogène à la Schumpeter sans effets
d’échelle. L’auteur confirme fortement l’hypothèse d’effets de retombées technologiques
sur le succès de l’innovation au niveau de l’industrie en conséquence d’une forte
intensité de recherche.
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1. Introduction

In this paper, I implement a direct test of endogenous growth theory based on
a Schumpeterian endogenous growth model without scale effects. This frame-
work, which includes Dinopoulos and Thompson (1998), Howitt (1999), and
Segerstrom (2000), emphasizes the growth-enhancing effects of research expen-
ditures undertaken by profit-making entrepreneurs. Unlike exogenous or semi-
endogenous growth models, these models are consistent with policy’s having a long-
run impact on economic growth so that empirical testing of Schumpeterian
growth models can be informative about the potential for policy to influence
technological progress and economic growth in the long run.

The Schumpeterian framework implies a positive relation between R&D
intensity, the rate of patenting, technological change, and the growth rate of
output per worker. My approach relies on a system of equations and restric-
tions implied by this endogenous growth framework in steady state. I derive
and estimate the implications of the Schumpeterian framework of endogenous
growth as a system of equations examining the impact of (i) R&D intensity on
the rate of patenting, (ii) the rate of patenting on technological progress, and
(iii) technological progress on economic growth. Consistent with the model’s
assumption that individual industries can draw from an aggregate pool of
knowledge, I also consider the effect of total manufacturing innovative activity
variables on the average industry’s innovation success.

In the paper I utilize data from a panel of industries at the 2-digit SIC
classification of U.S. manufacturing for the period 1963–88. The manufactur-
ing sector accounted for more than 90% of R&D expenditures in the United
States until the late 1980s. Thus, this sector offers a natural laboratory in
which to examine the validity of models of R&D-based growth. Moreover, the
U.S. manufacturing sector is a useful benchmark for studying the link between
innovation and economic growth, since the United States is arguably at the
world technological frontier.

The evidence presented in this paper provides support for the Schumpeterian
endogenous growth framework without scale effects. I show that R&D
intensity has a positive impact on the rate of patenting. The rate of patenting
is then shown to drive technological progress which in turn drives the growth
rate of output per worker. Moreover, the evidence points to technological
spillovers from aggregate research intensity to industry-level innovation
success.

The endogenous growth framework considered here is free of the scale
effects implication of first-generation endogenous growth models such us
Romer (1990), Segerstrom, Anant, and Dinopoulos (1990), and Aghion and
Howitt (1992.) A scale effect arises in these models because they predict that a
higher level of R&D expenditures (or a more populous economy) will be
associated with higher rates of economic growth in steady state. This predic-
tion does not fare well in the data. Accordingly, these models were criticized by
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Jones (1995b), who pointed out rising R&D expenditures and rising numbers
of scientists and engineers in relation to the constancy of TFP growth as
evidence against first-generation endogenous growth models.1 His argument
is portrayed in figure 1, which reproduces figure 1 from Jones (1995b) with
U.S. manufacturing data. As is evident here, the rising levels of R&D expen-
ditures and of the number of scientists and engineers have not been accom-
panied by an increase in the rate of technological progress, as would be
predicted by early endogenous growth models.

Schumpeterian endogenous growth models without scale effects are essen-
tially a response to the Jones critique. These models predict a positive relation
between the fraction of GDP allocated to R&D expenditures (R&D intensity)

1 Jones (1995b) then proposes a ‘semi-endogenous’ growth theoretical framework where, in steady
state, the growth rate of labour drives the rate of economic growth, and variables that can be
influenced by policy have no effect. Similarly, Segerstrom (1998) considers a semi-endogenous
growth setting. Both models imply a transition period which is several decades long.

10

8

6

4

2

0

–2

R&D

S&E

TBK

1950 1955 1960 1965 1970 1975 1980 1985 1990

year

FIGURE 1 R&D expenditures, scientists and engineers, and the rate of technological progress
NOTES: The U.S. manufacturing sector research and development expenditures shown in figure 1
as ‘R&D,’ are total industry research and development expenditures in constant dollars from table
4.2 of the BEA R&D Satellite accounts. In the above figure, this is given in billions of 1987 $US. The
series of scientists and engineers for the U.S. manufacturing sector shown in figure 1 as ‘S&E,’ is the
annual average full-time-equivalent number of research and development scientists and engineers
from table 4.3 of the BEA R&D Satellite accounts. In figure 1, this is given in hundreds of thousands.
Technological progress (TBK) refers to the Basu, Fernald, and Kimball (1998) fully corrected
estimate of technological progress, here given in percentages. This accounts for imperfect competition
and removes spurious procyclicality from total factor productivity growth.
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and technological progress but do not presume a relation between the latter
and the level of R&D expenditures, as was implied by first-generation models.
As a result, these models suggest that the rate of technological progress
remains constant during periods when R&D intensities are constant. Figure 2
illustrates the behaviour of R&D intensity and technological progress for
aggregate U.S. manufacturing during the period 1957–89. Unlike the R&D
expenditures levels shown in figure 1, the fraction of GDP allocated to R&D
shown in figure 2 appears to be relatively constant. Figure 2 also presents the
share of labour devoted to R&D activities, S&E/L, in the manufacturing sector
for the period 1960–89. To the extent that figure 2 shows this variable exhibit-
ing similar time-series behaviour with R&D intensity, then the positive relation
between R&D intensity and technological progress documented in this paper
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FIGURE 2 R&D intensity, scientists and engineers over employment, and the rate of
technological progress
NOTES: The R&D intensity series for the manufacturing sector shown in figure 2 as ‘R&D/Y,’ is
constructed by dividing R&D expenditures in current dollars by gross output in current dollars.
R&D in current dollars is total industry research and development expenditures, including federally
funded R&D, in millions of dollars from table 3.1 of the BEAR&D Satellite accounts. Gross output
in current dollars is taken from the Jorgenson, Gollop, and Fraumeni database. The series for the
fraction of the labour force engaged in R&D activities shown in figure 2 as ‘S&E/L,’ is constructed
using the series for the number of scientists and engineers in the manufacturing sector from figure 1,
divided by total employment in manufacturing. Total employment in manufacturing for the period
1960–92 is taken from the OECD Sectoral Database of 1994. Technological progress (TBK) refers to
the Basu, Fernald, and Kimball (1998) fully corrected estimate of technological progress. This
accounts for imperfect competition and removes spurious procyclicality from total factor
productivity growth.
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would suggest a similar positive relation between technological progress and
the share of labour devoted to R&D activities.2

In this paper, I utilize empirical measures corresponding closely to the
theoretical concepts of the R&D input, the rate of innovation, and the rate
of technological progress that arise in the above framework. First, Aghion and
Howitt (1998, 418) suggest that R&D intensity, rather than the R&D stock or
the number of scientists and engineers, is the proper measure for the R&D
input in the innovation function within the context of the endogenous growth
model without scale effects I consider here. Thus, I construct R&D intensities
as the fraction of output devoted to R&D expenditures. Second, Kortum
(1993) shows that the rate of patenting is the relevant measure for quality-
ladder models like the one examined here. Thus, I construct measures of the
rate of patenting to proxy for the rate of innovation. Finally, I use the Basu,
Fernald, and Kimball (1998) fully corrected estimate of technological progress
which is consistent with the imperfect competition assumption of this endo-
genous growth framework and removes spurious3 procyclicality from TFP
growth. My approach is also consistent with Kirchhoff’s (1994) and Geroski’s
(1994) discussions on innovative activity: R&D is considered to be an input
into the production of patents or inventions, and patents as intermediates into
the production of innovations that bring about gains in productivity. To
capture the chain of events leading to technological progress, I explicitly take
into account the relationship between R&D intensity and the rate of patenting
as implied by the production function of inventions and use the rate of
patenting to proxy for the rate of innovation.4

The paper deviates from the earlier empirical literature as documented
below. That literature typically has examined the relation between R&D and
patenting, or between R&D and productivity in isolation from one another

2 Jones (1995b) argues against his specification (3) on p. 762, which relates TFP growth to the
share of labour devoted to R&D. He presents the rising share of labour devoted to R&D in his
figure 2 on p. 764 as evidence against this relation. The importance of this relation lies in the
fact that ‘With a specification such as (3), it is easy to see that R&D drives TFP growth and that
subsidies to R&D . . . will raise the steady-state growth rate.’ To make a conclusive statement on
the relation of technological progress to the fraction of labour employed in R&D activities,
further investigation is needed. I do not attempt to estimate the latter relation because R&D
intensity corresponds more closely to the theoretical model under study and because data on
scientists and engineers are more fragmented at the industy level, compared with R&D data.

3 ‘Spurious’ in the sense that such cyclicalities are unrelated to technical change, which is what
TFP growth aims to measure when used in growth applications.

4 In related work, Caballero and Jaffe (1993) develop an empirical framework consistent with
a Schumpeterian model of creative destruction but do not estimate the overall system of
equations implied by the model as a whole, as I do here. Crepon, Duguet, and Mairesse (1998)
investigate the channels through which R&D impacts on innovation and productivity growth
for French manufacturing firms and report evidence for a positive relation between research
effort and innovation output as proxied by patent numbers, as well as between the latter and
productivity growth. My paper complements their work, since I study these relations at a more
aggregate level over a longer time dimension and by providing a direct link to long-run
economic growth.
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within a partial equilibrium framework. Instead, I explore a theoretically
implied system of equations in which all the stages of the innovation process
are considered simultaneously. In this sense, the approach adopted here pro-
vides a unifying framework where the interrelations at different stages of the
innovation process are explicitly taken into account. Estimating such a system
improves the efficiency of estimation relative to estimating individual relations
implied by partial equilibrium analysis and can provide more accurate esti-
mates of the impact of R&D on technological progress and economic growth,
accounting for the specific mechanics that link these concepts together.

Pakes and Griliches (1984) study the relationship between R&D and patent-
ing for a large number of firms over a short time period. They consider
contemporaneous effects as well as lags of R&D and find that the sum of the
contemporaneous and lagged effects is positive and significant. Griliches (1990)
points out that the latter result is driven by a large contemporaneous effect and
explains that this might well be due to reverse causality. To address this problem,
I employ an instrumental variables approach, instrumenting contemporaneous
values of the explanatory variables with their lags. On the other hand, studies of
the direct partial equilibrium relation between R&D and productivity, reviewed
in Nadiri (1993), give mixed results, with the significance of the relation being
sensitive to the time period under study and the level of disaggregation.5 More
recent work on the direct link between R&D and productivity includes
Zachariadis (forthcoming), who provides evidence for R&D-induced growth in
OECD countries; Keller (2002), who documents the role of international
spillovers on the relation between R&D and productivity growth in the
OECD; and Griffith, Redding, and Van Reenen (2000), who use OECD data
to show that R&D can enhance the ability of firms to learn as well as stimulate
innovation directly. In this paper, I provide support for a direct as well as an
indirect relationship between R&D intensity and productivity growth.

To summarize: the endogenous growth framework considered here implies
in steady state a positive impact of R&D intensity on the rate of patenting, of
the rate of patenting on the rate of technological change, and of the latter on
the growth rate of output per worker. I find that a positive impact exists in
each case and that aggregate manufacturing R&D has a strong positive impact
on industry patenting rates consistent with technology spillovers across manu-
facturing industries. These findings lead to a rejection of the null hypothesis
that growth is not induced by R&D, in favour of the Schumpeterian endogen-
ous growth framework without scale effects.

Next, I provide the theory behind the empirical specification. In the third
section, I describe the data, in section 4 I describe the empirical analysis and
results, and section 5 briefly concludes.

5 These studies, which include Griliches (1980a,b), Mansfield (1988), and Griliches and Mairesse
(1990), have typically used broad cross-sections of firms or disaggregated industry data over
small periods of time.
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2. Theoretical motivation

I consider a model from Aghion and Howitt (1998) and Howitt (1999) in order
to study the implications of the Schumpeterian endogenous growth framework
without scale effects. This framework is best viewed in the context of developed
economies that perform R&D. Below, I provide a brief and non-rigorous
description of the model’s main components.

Growth in this model is driven by vertical drastic innovations that improve the
quality of goodsanddisplace previous incumbents. Themodel includes a final goods
sector with constant returns to scale,Qtmonopolistic intermediate industries, and a
research sector that develops new generations of inputs targeted at specific inter-
mediate industries. The model provides a set of testable implications comprising (1)
a positive relation between the arrival rate of innovations and R&D intensities, (2)
a positive relation between the average rate of productivity growth and the arrival
rate of innovations, and (3) a positive relationship between the growth rate of output
per worker and the rate of productivity growth. As shown below, the first two
implications are adirect consequence of theproduction functionofknowledge in the
research sector, while the third implication follows from the final output equation
and the intermediate inputs production function.

Output of the single final good, Yt, at time t is produced as
Yt ¼ (Lt=Qt)

1�� RQt

0 Aitx
�
itdi with Ait a productivity parameter attached to the

latest version of intermediate product i, xit the output flow of intermediate product
i, Qt the number of intermediates which grows as a result of imitation (not
deliberate innovation), and Lt the labour input in the final goods sector growing
at an exogenous population rate. Division of Lt by Qt eliminates any productivity
gain resulting from product proliferation. The assumption here is that population
and product variety (the number of intermediate sectors) grow at the same rate, so
that the market size for any one intermediate product remains constant as popula-
tion grows. This deals with the ‘demand-driven scale effects’ implied by earlier
endogenous growth models.6 Each intermediate sector is monopolized and sells its
product to the competitive final sector at a price equal to the marginal product of
that intermediate input in producing the final good. Capital is used as an input in
the production of intermediate goods, so that the output flow of intermediate input
in sector i in period t is given by xit¼Kit/Aitwhere Kit is the capital input for sector
i, and Ait is the sector-specific productivity parameter attached to the latest version
of intermediate product i. Division of the capital input by this productivity para-
meter indicates that successive vintages of the intermediate product i are produced

6 Jones (1999) shows that a proportionate relation between product variety and population is
needed for the Dinopoulos and Thompson (1998) or the Howitt (1999) models to avoid the
scale effects problem. If product variety increases more than proportionately with population,
then one is left with the Jones (1995b) model, where long-run growth is simply proportional to
the rate of population growth and does not depend on other endogenous variables. If product
variety increases less than proportionately with population, then the implication is that
Howitt’s (1999) model still exhibits scale effects in growth.
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by increasingly capital-intensive techniques. As a result, in a steady state, capital
and productivity will have to grow at the same rate for the output flow of inter-
mediate product xit to be constant.

Turning now to the research sector looking to develop the next generation
of an intermediate input i, the flow of innovation output, �it, is given as

�it ¼ ��(nit) ¼ ��
Rit

Amax
t

� �
,�0 > 0,�00 < 0, (1)

where �> 0 is the flow probability of an innovation and indicates R&D
productivity, the function � exhibits decreasing returns to R&D as a result of
a research congestion externality within any one product associated with
duplication and overlap, and nit ¼ Rit=A

max
t is the research intensity, with Rit

the total amount of final output invested in R&D at date t. The same
equilibrium flow of research input Rit is used for any intermediate input i, so
that Rit¼Rt. Finally, A

max
t is the leading-edge productivity parameter at date t,

and division by this indicates that the cost of further advances increases
proportionately to technological advances as a result of increasing complexity.
That is, research expenditures should increase at the same rate as the technol-
ogy frontier shifts outwards just to keep the flow of innovations constant.
Equation (1) implies a positive relationship between the rate of innovation
arrival (the rate of patenting) and the productivity-adjusted level of R&D at
time t given by nt. As Aghion and Howitt (1998) argue, in a steady state, the
latter can be measured by the fraction of output allocated to R&D.7

The arrival rates of innovations in different sectors draw from the same pool
of knowledge whose state is represented by the leading-edge technology
parameter Amax

t . An important characteristic of this framework is that growth
in the leading-edge technology occurs as a result of the knowledge spillovers
produced by innovations. Each innovation is implementable only in the
intermediate industry in which it is used, but increases the knowledge stock
depending on the innovation size �, so that the next innovator in any inter-
mediate industry can draw from an expanded pool of knowledge. Finally, the
ratio of the average to leading-edge technology is Aavr

t ¼ Amax
t =(1þ �) which,

with constant �, implies A _aavr
t =Aavr

t ¼ _AAmax
t =Amax

t . From the above, productivity
growth, gt, will depend on the size of innovations, �, and the innovation rate,
�t, so that

gt ¼
A _aavr

t

Aavr
t

¼ ��t: (2)

7 The rate at which the technology frontier improves drives the rate of output growth. Thus, in a
steady state, the ratio Rt/Yt, where Yt stands for output, behaves similarly to Rt=A

max
t .
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This equation suggests a positive relationship between productivity growth
and the rate of patenting.8

Finally, we need to obtain a relation between the growth rate of output
per worker and technological progress. With some manipulation, the output
equation for the final good can be rewritten in the standard per capita form
as Yt=Lt ¼ Aavr

t kat .
9 Taking logs and differentiating with respect to time, the

latter expression then implies that the growth rate of output per worker, Gt, is
given by

Gt ¼ gt þ �
_kkt
kt
: (3)

In a steady state, the growth rate of capital, _kkt=kt, is equal to zero and
economic growth depends solely on the rate of technological progress. In the
system estimation in the next section, I consider the relationship of the growth
rate of output per person with the rate of technological progress in steady
state.

3. A preliminary look at the data

I use annual data on patents, R&D expenditures, gross output, and produc-
tivity growth. These data are available for the period 1963–88 for the manu-
facturing sector and 10 2-digit industries of this same sector. These are 20:
Food and Kindred Products, 28: Chemicals and Allied Products, 30: Rubber
and Plastics Products, 32: Stone, Clay, and Glass Products, 33: Primary Metal
Industries, 34: Fabricated Metal Products, 35: Machinery Except Electrical,
36: Electrical Machinery, 37: Transportation Equipment, and 38: Instruments
and Related Products.

8 When �(nt) ¼ n
�
t , then A _aavr

t =Aavr
t ¼ v(Rt)

�(Aavr
t )�� with v¼ ��(1þ�)��, and the equation for the

growth rate of average productivity resembles the research technology in Jones (1995b), the
main difference being that now Rt includes capital inputs.

9 The derivation steps follow. First, the condition for equilibrium in the capital market gives
Kt ¼

RQt

0
Kitdi, which combinedwith the condition for intermediate output givesKt ¼

RQt

0
Aitxitdi ¼

xtQtA
avr
t . Output for intermediates is thus given by xt ¼ Kt=A

avr
t Qt. Noting that xit¼xt, and

plugging the latter in the output equation, we see that

Yt ¼
Lt

Qt

� �1��Z Qt

0

Ait(Kt=A
avr
t Qt)

�di

¼ Lt

Qt

� �1��
Aavr

t Qt(Kt=A
avr
t Qt)

� or

Yt ¼ (Aavr
t Lt)

1��K�
t ¼ Aavr

t Ltk
�
t :
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Since the theoretical model is consistent with stationarity of the variables
utilized here – namely, the rate of patenting, R&D intensity, the growth rate of
productivity, and the growth rate of output per worker – the starting point
should be to test for the null of stationarity rather than the null of a unit root.
More specifically, I apply the G(p, q)-tests from Park (1990.) Under the null
that a variable is stationary after removing the maintained deterministic time
trends of time polynomial of order p, the G(p, q)-test has asymptotic chi-square
distribution with q-p degrees of freedom. These tests are based on spurious
regression results. Consider a regression:

xt ¼
Xp
t¼0

�� t
� þ

Xq
t¼pþ1

�� t
� þ �t:

The maintained hypothesis is that the variable x possesses deterministic time
polynomials up to the order of p, and additional time polynomials are spurious
time trends. Kahn and Ogaki (1992) perform Monte Carlo experiments on
Park’s G(p, q)-tests and conclude that a small q is advisable for small samples.
Thus, I use the G(p, q)-tests for q¼ 1, 2, and 3. I consider the case of p¼ 0 (no
deterministic trend) and p¼ 1 (with deterministic trend.) I report the results for
both p¼ 0 and p¼ 1 which are, in general, very similar. Nevertheless, the
literature suggests that a prior based on independent information regarding
the presence or absence of a deterministic trend is useful. For example, institu-
tional changes negatively affecting the propensity to patent over time suggest
the presence of a negative deterministic trend, whereas no such prior informa-
tion about the presence of a trend exists for R&D intensity, productivity
growth, or the growth rate of output per worker. Moreover, a deterministic
trend does not enter significantly into the univariate analysis of the latter three
series but is significant and negative for the rate of patenting.10 Thus, even
though I report results for the stationarity tests with a deterministic trend as
well as without one, I favour the G(0, q)-tests for the latter three variables and
the G(1, q)-test for the rate of patenting. For all the variables, I present the
results of Park’s G(p, 2), G(p, 3), and G(p, 4) stationarity tests for p¼ 0 or p¼ 1
in table 1. A panel test that uses the Bonferroni bound is also performed for
each variable. In general, using a Bonferroni bound, one would reject the null

10 The null hypothesis that the deterministic trend coefficient is zero in a regression of the form
y¼ cþ	tþ �yt�1 cannot be rejected for these three series at a 5% level of significance using a
Bonferroni Bound, but is rejected for the rate of patenting. I also tested for the presence of a
split trend term that allows for a change in the slope of the trend. The split trend term is the
coefficient � in a regression resembling the first step of Perron’s (1989) model B:
yt ¼ �þ 	tþ �DT*

t þ errort, with DT*
t ¼ t� TB, where TB is the ‘break’ period. The null that

� is zero is not rejected at the 5% level of significance for the three dependent variables of
equations (1), (2), and (3): the rate of patenting, productivity growth, and the growth rate of
output per worker. Thus, a split trend is not included in the empirical specification of section
four.

R&D, innovation, technological progress 575



TABLE 1
P-values for the stationarity null (G-test; Park 1990)

G(0, 2) G(0, 3) G(0, 4) G(1, 2) G(1, 3) G(1, 4)

R&D Intensity

Total Manufacturing 0.363 0.283 0.253 0.172 0.167 0.176
Food & Kindred Products 0.031* 0.084 0.160 0.216 0.263 0.238
Chemicals & Allied Products 0.363 0.266 0.152 0.164 0.094 0.157
Rubber & Plastics Products 0.066 0.078 0.165 0.035* 0.108 0.170
Stone, Clay & Glass Products 0.059 0.137 0.262 0.246 0.494 0.319
Primary Metal Industries 0.767 0.296 0.375 0.118 0.208 0.036*
Fabricated Metal Products 0.218 0.415 0.149 0.492 0.024* 0.057
Machinery Except Electrical 0.033* 0.075 0.159 0.037* 0.109 0.159
Electrical Machinery 0.066 0.137 0.254 0.214 0.406 0.180
Transportation Equipment 0.656 0.569 0.359 0.317 0.196 0.154
Instruments & Products 0.033* 0.098 0.188 0.257 0.253 0.234

Rate of patenting

Total Manufacturing 0.109 0.269 0.213 0.677 0.036* 0.071
Food & Kindred Products 0.182 0.349 0.263 0.433 0.121 0.232
Chemicals & Allied Products 0.092 0.162 0.139 0.139 0.027* 0.059
Rubber & Plastics Products 0.114 0.286 0.208 0.952 0.036* 0.034*
Stone, Clay & Glass Products 0.118 0.284 0.218 0.609 0.033* 0.051*
Primary Metal Industries 0.086 0.228 0.216 0.843 0.042* 0.096
Fabricated Metal Products 0.101 0.226 0.212 0.302 0.033* 0.064
Machinery Except Electrical 0.070 0.188 0.221 0.558 0.051* 0.101
Electrical Machinery 0.163 0.327 0.217 0.414 0.055 0.079
Transportation Equipment 0.076 0.204 0.234 0.685 0.087 0.180
Instruments & Products 0.368 0.659 0.194 0.856 0.061 0.131

Rate of technological progress

Total Manufacturing 0.957 0.477 0.685 0.224 0.476 0.638
Food & Kindred Products 0.387 0.608 0.434 0.614 0.359 0.556
Chemicals & Allied Products 0.309 0.589 0.529 0.873 0.539 0.701
Rubber & Plastics Products 0.668 0.502 0.648 0.274 0.479 0.669
Stone, Clay & Glass Products 0.479 0.531 0.679 0.381 0.603 0.656
Primary Metal Industries 0.289 0.522 0.722 0.665 0.897 0.975
Fabricated Metal Products 0.606 0.499 0.669 0.288 0.523 0.729
Machinery Except Electrical 0.014* 0.046* 0.093 0.722 0.778 0.859
Electrical Machinery 0.331 0.282 0.469 0.198 0.436 0.233
Transportation Equipment 0.143 0.275 0.234 0.493 0.318 0.514
Instruments & Products 0.257 0.118 0.136 0.074 0.104 0.025*

Growth rate of output per worker

Total Manufacturing 0.687 0.409 0.602 0.200 0.425 0.634
Food & Kindred Products 0.118 0.145 0.053* 0.205 0.051* 0.082
Chemicals & Allied Products 0.680 0.703 0.265 0.462 0.147 0.273
Rubber & Plastics Products 0.740 0.219 0.385 0.088 0.233 0.369
Stone, Clay & Glass Products 0.538 0.499 0.587 0.314 0.459 0.439
Primary Metal Industries 0.118 0.145 0.053* 0.205 0.051* 0.082
Fabricated Metal Products 0.239 0.242 0.387 0.207 0.405 0.342
Machinery Except Electrical 0.678 0.886 0.965 0.793 0.950 0.837

(continued )
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hypothesis at the 10% level of significance for a panel of n industries if one can
reject the null hypothesis at the 10/n level of significance for any of the n
industries.

U.S. R&D data for 1957–92 were compiled by Bruce Grimm and Carol
Moylan at the BEA as part of the R&D Satellite Accounts in 1994. They are
available for 1957 to 1992. These R&D data account for research and devel-
opment expenditures by ‘Federally Funded Research and Development Cen-
ters’ (FFRDC), which are administered by industry, as well as private business
R&D expenditures. R&D intensities at the industry level are constructed as the
ratio of R&D expenditures in current dollars over gross output in current
dollars.11 In table 1, I present the results of the stationarity tests for the
R&D intensities in manufacturing and its 2-digit industries for which data
are available. The individual industry variables appear to be stationary,12 and
a panel test that uses the Bonferroni bound implies that the null of stationarity
cannot be rejected even at the 10% level of significance.

The available patents data consist of patents granted allocated in the year in
which the application was filed with the U.S. patent office. These are available
at the industry level for the period 1963–88. I obtained these data from the
ESRC Data Archive. These data were collected by the U.S. Department of
Commerce and compiled by R.A. Wilson in 1991. I construct the stock of
patents as a measure of the knowledge stock using a knowledge obsolescence
rate of 7% and the average annual rate of technological obsolescence over the
past century as estimated by Caballero and Jaffe (1993). The benchmark year

TABLE 1 concluded

G(0, 2) G(0, 3) G(0, 4) G(1, 2) G(1, 3) G(1, 4)

Electrical Machinery 0.945 0.843 0.917 0.562 0.777 0.906
Transportation Equipment 0.133 0.188 0.218 0.264 0.286 0.411
Instruments & Products 0.248 0.306 0.457 0.276 0.483 0.672

NOTES: *Reject the Null of stationarity at the 5% level of significance for the individual industry.
R&D intensity is the fraction of output spent on research and development. This is available for
1957–89. The rate of patenting is the number of patents over the stock of patents. This is available
for 1963–88. The growth rate of output per worker is available for 1951–89. This is the growth rate
of the ratio of gross output over labour quantity using Jorgenson’s gross output data and labour
quantity data. The rate of technological progress is the Basu, Fernald, and Kimball (1998) measure
(TBK) and is available for 1951–89.

11 Specifically, R&D expenditures in current dollars is total industry Research and Development
Expenditures by performing industry in millions of dollars from table 3.1 of the BEA R&D
Satellite accounts. Gross output for the period 1950–89 is taken from the database constructed
by Jorgenson and his associates.

12 The null of stationarity is rejected at the 5% level of significance using Park’s G(0, 2)-test for
industries 20, 35, and 38, using the G(1, 2)-test for industries 30 and 35, using the G(1, 3)-test for
industry 34, and using the G(1, 4)-test for industry 33. Overall, the null of stationarity is never
rejected for an industry by more than one of the three tests for p¼ 0 or p¼ 1.
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(1963) stock is given by the number of patents over the depreciation rate.13

I accumulate this up to 1988 using (Stock of Patents)t¼ (Stock of
Patents)tþ (1� 0.07)� (Stock of Patents)t�1. The rate of patenting is then
given by the ratio of the number of patents for any one year over the stock
of patents up to that year. Given that the model is consistent with a stationary
rate of patenting in steady state, I test this series for the null of stationarity.
Table 1 presents the results of the stationarity tests for the rate of patenting in
manufacturing and its 2-digit industries with available data. A panel test using
the Bonferroni bound implies that the null of stationarity cannot be rejected
even at the 10% level of significance.14

The rate of technological progress is usually proxied by total factor pro-
ductivity (TFP) growth. Under the assumptions of constant returns to scale,
perfect competition in the inputs and outputs markets, instantaneous adjust-
ment of all inputs (long-run equilibrium), correct aggregation, and correct
measurement of the several inputs and outputs, TFP growth measures exactly
the exogenous shifts in the production function and thus is identical to the
‘true’ technology shock. In the presence of non-constant returns to scale,
imperfect competition, factor adjustment costs, aggregation bias, and measure-
ment errors for input and output quantity and quality, the degree of cyclicality
and persistence of measured TFP growth generally will not coincide with the
cyclicality and persistence of the technology shock. Basu, Fernald, and
Kimball provide estimates of the technological change component of TFP
growth for U.S. manufacturing for 1950–89 and the Jorgenson input and
output data for the U.S. economy for 1948–89. They use Jorgenson’s quality-
adjusted gross output data15 and consider adjustments for non-constant
returns to scale, imperfect competition, cyclical factor utilization, and aggrega-
tion effects. The resulting fully corrected estimate of technological change
(TBK) removes the contemporaneous procyclical bias. This measure is consis-
tent with the imperfect competition assumption of endogenous growth models.
Moreover, it enables an improved (cyclicality-free) assessment of the relation
between technological change and innovative activity. Thus, I use this fully
corrected technological progress measure, TBK, throughout the paper. In table 1,
I present the results of the stationarity tests for the rate of technological
progress. The individual industry variables appear stationary in the great
majority of industries,16 and a panel test that uses the Bonferroni bound

13 The growth rate of patents ranged from positive to negative values over the period, so that the
average was close to zero.

14 Looking at each individual industry, there are six rejections of the null of stationarity at the 5%
level of significance using Park’s (1990) G(1, 3)-test. These are for industries 28, 30, 32, 33, 34,
and 35. The G(1, 4)-test rejects the stationarity null only for industries 30 and 32, while Park’s
G(1, 2)-, G(0, 2)-, G(0, 3)-, and G(0, 4)-tests never reject the null of stationarity at the 5% level of
significance.

15 For a detailed description of this dataset see Jorgenson, Gollop, and Fraumeni (1987).
16 The null of stationarity is rejected at the 5% level of significance using Park’s G(0, 2)- and

G(0, 3)-tests for industry 35, and using the G(1, 4)-test for industry 38.
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implies that the null of stationarity cannot be rejected even at the 10% level
of significance.

Finally, I use Jorgenson’s gross output data and labor quantity data for
U.S. manufacturing industries for the period 1950 to 1989 to calculate the
growth rate of output per worker. In table 1, I also present results of station-
arity tests for the growth rate of output per worker. Once again, the individual
industry variables appear stationary in the great majority of industries17 and a
panel test that uses the Bonferroni bound implies that the null of stationarity
cannot be rejected at the 10% level of significance.

4. Empirical analysis and results

Equations (1S), (2S), and (3S) follow from equations (1), (2), and (3) and form
the basis of a system that in turn relates R&D intensity to the rate of patenting,
the rate of patenting to the rate of technological progress, and, finally, the rate
of technological progress to the growth rate of output per worker. This system
is essentially the value-added from the use of an endogenous growth model in
asking the questions relating to R&D, patents, and productivity. The restric-
tions implied by the model allow us to exclude other explanatory variables in
the equations of the system and to get a relatively simple structure as follows:

log�it ¼ �i þ �tþ � log nit þ uit (1S)

git ¼  i þ ��it þ vit (2S)

Git ¼ �i þ 
git þ eit; (3S)

where uit, vit, and eit are stationary errors.18 Here, nit stands for R&D intensity,
�it for the rate of patenting, git for the rate of technological change, and Git for
the growth rate of output per worker.

I estimate this system of equations for a panel of 10 industries during the
period 1963–88,19 by instrumenting the contemporaneous explanatory vari-
ables using their lagged values and applying three-stage least squares.

Equation (1S) is a logarithmic linearization of equation (1), which assumes
�(nt) ¼ n

�
t as the functional form for the R&D production function, where nit

17 The null of stationarity is rejected at the 5% level of significance using Park’s G(0, 4)- and
G(1, 3)-tests for industries 20 and 33.

18 As shown in section 3, we do not reject the stationarity null for the variables used in the above
estimation. Keller (2002) also chooses a trend stationary specification for the relation between
R&D and productivity and argues that whether or not a time series is deemed to be stationary
depends on the level of heterogeneity in the data generation processes across industries that one
allows for.

19 This gives us 230 observations. We have 23 annual observations after taking three lags for each
of the three main explanatory variables of the system to be used as instruments for their
contemporaneous values. Using the second lag or a combination of the lags to instrument the
RHS variables does not change the results qualitatively.
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stands for R&D intensity and �it for the rate of patenting in industry i at
period t. The industry-specific constants �i capture an industry’s research
productivity but might also be capturing industry-specific differences in the
propensity to patent. I also consider a common trend in equation (1S) to
capture possible changes of the propensity to patent over time. This is con-
sistent with the results of the univariate analysis regarding the presence of a
deterministic trend for the rate of patenting. Indeed, changes in the propensity
to patent are well documented – see, for example, Pakes and Griliches (1984) –
and constitute an idiosyncrasy of this empirical measure of the rate of
innovation.20 These changes in the propensity to patent can be thought of as
exogenous to the theoretical model and unrelated to the ‘true’ rate of innova-
tion that the theoretical specification from equation (1) relates to. Accounting
for changes in the propensity to patent extends the specification to better
capture the ‘true’ rate of innovation.

For model II, I impose the restriction nit¼ nt on equation (1S) in order to
capture spillover effects from aggregate manufacturing R&D to the individual
industries innovation production. This is consistent with the model’s implica-
tion that R&D performed by any one firm increases the innovation success of
other firms. The results are not sensitive to the inclusion or exclusion of own-
industry R&D along with the aggregate measure in equation (1S.)

In going from the theoretical equation (2) to the empirical specification (2S),
we suppose that the aggregate relation from the former equation is reflected in
the behaviour of the average manufacturing industry. The hypothesis that the
size of innovations is equal across industries, �i¼ �, cannot be rejected at the
10% level of significance, and thus is imposed on equation (2S) to limit the
number of parameters to be estimated. Industry-specific effects  i added to
equation (2S) capture the effect on technological change of heterogeneity
among the industries due to factors other than the rate of innovation. Finally,
preliminary testing suggested that a time trend need not be included in equa-
tion (2S). The univariate analysis for technological progress suggests that this
does not possess a deterministic or other trend. When included, a time trend
was estimated to be statistically indistinguishable from zero.

In model III, I allow for a direct effect of R&D on technological change by
adding R&D intensity to the right-hand side of equation (2S). This direct effect
of R&D on technology is in addition to the indirect effect through the impact
of R&D on patents, which in turn enter equation (2S.) Some innovations are
not patented, and for such cases the link between R&D and technological
change will not be captured by the indirect effect of R&D on technological
change through its effect on patenting. It is thus advisable to add a term for the
direct effect of R&D to account for those cases in which innovations are not
patented. This both serves as a robustness check of the results as well as

20 Griliches (1990) also suggests rising costs of patenting over time as an explanation for a decline
in the number of patents.
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addresses possible shortcomings of the patenting rate as a measure of the
innovation rate.21

Finally, the variable Git in equation (3S) stands for the growth rate of gross
output per worker in industry i at time t. This equation captures the relation-
ship between the growth rates of technological progress and output per worker
in steady state. The industry-specific effects, �i, in equation (3S) are meant to
capture time-invariant heterogeneity among the industries that affects their
output growth. The univariate analysis of the growth rate of output per worker
suggests that a time trend need not be added.22

4.1. Results
In table 2, I present results for the basic system of equations (1S), (2S), and
(3S) in column I as well as results for modifications of these equations in
columns II and III.

21 Pakes and Griliches (1980, 378) argue that ‘patents are a flawed measure (of innovation
output); particularly since not all innovations are patented.’

22 When a time trend was added, this was estimated to be statistically indistinguishable from zero,
while all other estimates remain unchanged.

TABLE 2
Regression results

Equations Coefficients I II III

1S: log �it¼�iþ �tþ �log nitþ uit � 0.206 0.603 0.189
(3.85)*** (9.04)*** (3.56)***

2S: git¼ iþ��itþ snitþ vit s 0.131
(2.03)**

� 0.369 0.305 0.462
(2.43)** (2.45)** (3.00)***

3S: Git¼�iþ 
gitþ eit 
 1.049 1.314 0.715
(2.13)** (2.41)** (1.39)

p-value of hypothesis test that 
¼ 1 0.920 0.577 0.580
Total R&D impact on economic growth 0.083 0.656 0.159
Total R&D impact on productivity growth 0.079 0.499 0.222

NOTES: *p-value of hypothesis test< 0.10; **p-value< 0.05; ***p-value< 0.01; t-tests of the
hypothesis that the parameter equals zero given in brackets employing robust standard errors.
There are 230 observations for 10 manufacturing industries� 23 years (1966–88). The parameters
reported above are defined as follows: �: parameter for the impact of R&D intensity on the Rate of
Patenting. s: parameter for the direct impact of R&D intensity on Technological Change.
�: parameter for the impact of the Rate of Patenting on Technological Change. 
: parameter
for the impact of Technological Change on Economic Growth. The models estimated are as
follows: I: basic model from equations (1S), (2S), and (3S). II: imposes nit¼ nt on equation (1S).
III: adds nit to right-hand side of equation (2S.) The total impact on the growth rate of output per
worker is dG=dn ¼ (@G=@g � @g=@� � @ log�=@ log n � ���=�nn)þ (@G=@g � @g=@n) (@g/@n set to zero
for models I and II.) The total impact on the growth rate of productivity is dg=dn ¼
@g=@� � @ log�=@ log�=@ log n � ���=�nnþ @g=@n (again, @g/@n set to zero for models I and II).
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The estimates from the first equation of the system relating R&D intensity
to the rate of patenting are reported in the first row of table 2 and show that
the former has a positive impact on the rate of innovation. The finding of a
positive relationship between R&D and patenting over time complements the
existing literature summarized in Griliches (1990), which reports evidence of a
strong positive relationship between R&D and patenting at the cross-sectional
level.23 As we can see from the first row of column II, the impact of aggregate
R&D, 0.603, is much greater than the impact of own-industry R&D shown in
column I to be 0.206. The estimate of the impact of aggregate R&D is not
sensitive to the inclusion of own-industry R&D in the regression.24

The estimates from the second equation, (2S), are reported in the second
and third rows of table 2. As shown in the third row of the table, the impact of
the rate of patenting on technological progress is estimated to be positive and
statistically significant at 0.369, 0.305, and 0.462 for models I, II, and III,
respectively. The finding of a positive relation here deviates from Kortum
(1993). The direct impact of R&D intensity shown in the second row for
model III is also estimated to be positive, at 0.131. This confirms the findings
of some of the earlier work summarized in Nadiri (1993.)

Finally, the estimates for equation (3S), relating technological progress to
economic growth, suggest a positive impact of technological progress on the
growth rate of output per worker equal to 1.049, 1.314, and 0.715 for models I,
II, and III. The hypothesis that there is a one-to-one relation between techno-
logical progress and economic growth cannot be rejected for any of the three
models with p-values ranging from 0.92 to 0.58.

Using the estimates from each of the three equations in the system, we can
estimate an overall impact of R&D intensity on technological progress and on
economic growth. The overall impact of own-industry R&D intensity on tech-
nological progress in that industry is estimated to be 0.08 for model I and 0.22
when we include the direct impact of R&D on technological progress in model
III. Combined with the estimated coefficient for the impact of productivity on
economic growth, this implies that increasing an industry’s R&D intensity by
1 percentage point increases the growth rate of output per worker in that
industry by 0.08 or 0.16 percentage points for models I and III, respectively.

The return of aggregate R&D is much higher. Now, increasing aggregate
R&D intensity by 1 percentage point increases the rate of technological pro-
gress by half a percentage point and increases the growth rate of output per

23 Moreover, the trend coefficient in equation (1S) is estimated to be negative at �0.022
(t-stat¼�13.1), �0.026 (t-stat¼�18.2), and �0.022 (t-stat¼�13.2) for models I, II, and III,
respectively. This is consistent with Pakes and Griliches (1984), who report a negative trend
coefficient suggesting a falling propensity to patent.

24 When we include both aggregate manufacturing R&D and individual industry R&D in
equation (1S) in model II, the former is virtually unchanged – remaining positive and
statistically significant at 0.611 – whereas the latter is now statistically indistinguishable from
zero.

582 M. Zachariadis



worker by 0.66 percentage points. Thus, spillovers from aggregate R&D are
shown to be important for the technological success of individual industries
and for economic growth. It appears that the benefits of individual firms from
R&D performed in the manufacturing sector as a whole far outweigh the
benefits from R&D performed in their specific industry. This is consistent
with the Aghion and Howitt growth-theoretical framework, where once an
innovation is in place it is readily available to all R&D-performing firms
irrespective of which industry that innovation came from.

Taken together, the parameter estimates from the three equations imply that
the null hypothesis that economic growth is not induced by R&D can be rejected.
This suggests the plausibility of R&D-induced growth for the United States.

4.2. Relationship with other evidence
The results reported above provide support for the Schumpeterian endogenous
growth framework without scale effects presented in Aghion and Howitt
(1998) and Howitt (1999.) In particular, R&D intensity is shown to be posi-
tively related to technological progress and the growth rate of output per
worker. Moreover, there is a positive impact of aggregate R&D activity on
an industry’s innovation success. These findings also support the models of
Dinopoulos and Thompson (1998) and Segerstrom (2000) and are consistent
with the empirical findings of Dinopoulos and Thompson (2000), who provide
evidence in favour of an augmented version of Romer’s (1990) model for a
cross-section of countries.

In a review of the literature on the relation between R&D and patents,
Griliches (1990) concludes that there is a strong and positive relationship
between R&D and patents at the cross-sectional level across firms and indus-
tries, but only a weak relationship in the within-firms time series dimension.
My paper provides evidence for this relationship across a panel of industries
over a 23-year period. Kortum (1993) looks at the patents-productivity relation
using a panel of industries and finds a positive and significant coefficient for
the growth rate of the patent stock and that the rate of patenting, which is the
relevant measure for quality-ladder models like that of Aghion and Howitt
(1998), does not perform as well. Here, I find a relationship between the rate of
patenting and productivity growth, consistent with quality-ladder models. The
finding of a positive relation between innovation inputs and technological
change also deviates from Shea (1998.) Shea (1998) uses an unrestricted VAR
approach to look at the relation between R&D and Patents on the one side and
TFP on the other side, finding no evidence for a positive relationship. Instead,
I obtain the relation between R&D intensity, patenting, and productivity
growth, imposing restrictions on the structure as implied by the Schumpeterian
framework of endogenous growth. Another difference is the use of an
improved measure of technological progress here instead of the spuriously
procyclical measure of annual TFP growth rates used in the earlier paper.
Finally, Coe and Helpman (1995) estimate the relation between R&D stocks
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and productivity levels at the aggregate economy level for G7 countries during
1971–1990 and report returns on R&D expenditures in excess of 100%. Using
industry R&D intensities rather than aggregate R&D stocks, I find lower
returns for R&D in industries of the manufacturing sector.

Finally, by considering the mechanics of the relationship between techno-
logical change and output, this paper also makes a contribution to the literature
on economic fluctuations. I demonstrate that innovative activity is important
in explaining movements in productivity and output. This is consistent with
Fatas (2000), who stresses the interrelation between cyclical fluctuations and
long-term growth.25

5. Conclusion

Growth theory has made significant advances over the last decade or so. An
important contribution is the Schumpeterian model, which predicts a higher
rate of long-run economic growth for societies that generate higher R&D
intensities. This framework emphasizes the role of endogenous R&D and
patenting activity on productivity and ultimately economic growth. I estimate
the implications of this Schumpeterian framework of endogenous growth in
steady state as a system of interrelated equations linking R&D, patenting,
technological change, and economic growth. The theoretically implied system
estimation approach improves the efficiency of estimation and allows us to
estimate the impact of R&D on economic growth, while accounting for the
specific mechanics of this relationship. Consistent with the model’s assumption
that individual industries can draw from the aggregate pool of knowledge, I
also consider the effect of total manufacturing innovative activity variables on
the average industry’s innovation success.

The evidence presented in the paper provides support for the Schumpeterian
endogenous growth framework without scale effects. Using industry data from
U.S. manufacturing during the quarter-century from 1963 to 1988, I show
positive impact of R&D intensity on innovation, technological progress, and
economic growth. R&D intensity has a positive impact on the rate of patent-
ing, the rate of patenting has a positive effect on technological progress, and,
finally, technological progress has a one-to-one relation with the growth rate of
output per worker. Moreover, the intensity of aggregate manufacturing R&D
is shown to have a stronger impact on the rate of patenting than own-industry
R&D, suggesting technological spillovers across manufacturing industries.
Overall, I reject the hypothesis that long-run economic growth is not induced

25 A direct way to validate empirically the prediction of his model, that the time-series behaviour
of R&D expenditures is responsible for the persistence of output fluctuations, is to estimate the
effect of R&D expenditures on productivity growth. Citing evidence from Jones (1995a) and
Shea (1998), Fatas (2000, 156) points out that ‘the evidence on this issue is, however, very weak
and inconsistent.’
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by R&D, in favour of the Schumpeterian endogenous growth framework
without scale effects. This suggests that the model is a useful template for
studying growth in advanced economies like the United States.

A direct extension of this work would be to study the relation between
R&D, patents, productivity, and economic growth in countries behind the
world technology frontier, so as to assess the relevance of this class of models
for countries other than the technological leader. The study of the impact of
R&D performed by technological leaders on the economic success of countries
further behind the frontier is likely to be a fruitful area for future research.
Finally, an interesting extension would be to endogenize R&D by considering
the role of profits, scale of operation, and the economic environment in which
innovating firms operate in different countries. This would add to the findings
regarding the importance of R&D for long-run economic growth and would go
a long way towards explaining what is ultimately driving R&D-induced growth
and what role, if any, policy can play in encouraging this.

References

Aghion, Philippe, and Peter Howitt (1992) ‘A model of growth through creative
destruction,’ Econometrica 60, 323–51

—— (1998) Endogenous Growth (Cambridge, MA: MIT Press)
Basu, Susanto, John Fernald, and Miles Kimball (1998) ‘Are technology improvements

contractionary?’ International Finance Discussion Paper No. 625, Board of
Governors of the Federal Reserve System

Caballero, Ricardo, and Adam Jaffe (1993) ‘How high are the giant’s shoulders: an
empirical assessment of knowledge spillovers and creative destruction in a model of
endogenous Growth,’ NBER Working Paper No. 4370

Coe, and Helpman (1995) ‘International R&D spillovers,’ European Economic Review
39, 859–87

Crepon, Bruno, Emmanuel Duguet, and Jacques Mairesse (1998) ‘Research, innovation,
and productivity: an econometric analysis at the firm level,’ NBER Working Paper
No. 6696

Dinopoulos, Elias, and Peter Thompson (1998) ‘Schumpeterian growth without scale
effects,’ Journal of Economic Growth 3, 313–35

—— (2000) ‘Endogenous growth in a cross-section of countries,’ Journal of Interna-
tional Economics 51, 335–62

Fatas, Antonio (2000) ‘Do business cycles cast long shadows? Short-run persistence and
economic growth,’ Journal of Economic Growth 5, 147–62

Geroski, Paul (1994) Market Structure, Corporate Performance, and Innovative Activity
(Oxford: Clarendon Press)

Griffith, Rachel, Stephen Redding, and John Van Reenen (2000) ‘Mapping the two
faces of R&D: productivity growth in a panel of OECD industries,’ C.E.P.R.
Discussion Paper No. 2457

Griliches, Zvi (1980a) ‘R&D and the productivity slowdown,’ American Economic
Review Papers and Proceedings 70, 343–8

—— (1980b) ‘Returns to research and development expenditures in the private sector,’
in New Developments in Productivity Measurement and Analysis, ed. John Kendrick
and Beatrice Vaccara (Chicago: University of Chicago Press)

R&D, innovation, technological progress 585



—— (1990) ‘Patent statistics as economic indicators: a survey,’ Journal of Economic
Literature 28, 1661–707

Griliches, Zvi, and Jacques Mairesse (1990) ‘R&D and productivity growth: comparing
Japanese and U.S. manufacturing firms,’ in Productivity Growth in Japan and the
U.S., ed. Charles Hulten (Chicago: University of Chicago Press)

Howitt, Peter (1998) ‘Measurement, obsolescence, and general purpose technologies’ in
General Purpose Technologies and Economic Growth, ed. Elhanan Helpman
(Cambridge, MA: MIT Press)

—— (1999) ‘Steady endogenous growth with population and R&D inputs growing,’
Journal of Political Economy 107, 715–30

Jones, Charles I. (1995a) ‘Time series tests of endogenous growth,’ Quarterly Journal of
Economics 110, 495–526

—— (1995b) ‘R&D—based models of economic growth,’ Journal of Political Economy
103, 760–84

Jones, Charles (1999) ‘Growth: with or without scale effects?’ American Economic
Review Papers and Proceedings 89, 139–44

Jorgenson, Dale, Frank Gollop, and Barbara Fraumeni (1987) Productivity and U.S.
Economic Growth (Cambridge, MA: Harvard University Press)

Kahn, J.A., and M. Ogaki (1992) ‘A consistent test for the null of stationarity against
the alternative of a unit root,’ Economic Letters 39, 7–11

Keller, Wolfgang, (2002), ‘Trade and the transmission of technology,’ Journal of Eco-
nomic Growth 7, 5–24

Kirchhoff, Bruce (1994) Entrepreneurship and Dynamic Capitalism (Westport, CT:
Praeger)

Kortum, Samuel (1993) ‘Equilibrium R&D and the patent-R&D ratio: U.S. evidence,’
American Economic Review 83, 450–7

Mansfield, Edwin (1988) ‘Industrial R&D in Japan and the United States: a compara-
tive study,’ American Economic Review Papers and Proceedings 78, 223–8

Nadiri, M. Ishaq (1993) ‘Innovations and technological spillovers,’ NBER Working
Paper No. 4423

Ogaki, Masao (1993) ‘CCR: a user guide,’ Working Paper No. 349, University of
Rochester

Pakes, Ariel, and Zvi Griliches (1980) ‘Patents and R&D at the firm level: a first report,’
Economics Letters 5, 377–81

—— (1984) ‘Patents and R&D at the firm level: a first look,’ in R&D, Patents, and
Productivity ed. Zvi Griliches (Chicago: University of Chicago Press)

Park, Joon Y. (1990) ‘Testing for unit roots and cointegration by variable addition,’
Advances in Econometrics 8, 107–33

Perron, Pierre (1989) ‘The great crash, the oil price shock, and the unit root hypothesis,’
Econometrica 57, 1361–401

Romer, Paul M. (1990) ‘Endogenous technological change,’ Journal of Political
Economy 98, 71–102

Segerstrom, Paul (1998) ‘Endogenous growth without scale effects,’ American Economic
Review 88, 1290–310

—— (2000) ‘The long-run growth effects of R&D subsidies,’ Journal of Economic
Growth 5, 277–305

Segerstrom, Paul, T.C.A. Anant, and Elias Dinopoulos (1990) ‘A Shumpeterian model
of the product life cycle,’ American Economic Review 80, 1077–92

Shea John (1998) ‘What do technology shocks do?’ NBER Macro Annual, 275–310
Zachariadis, Marios (forthcoming) ‘R&D-Induced Growth in the OECD?’ Review of

Development Economics

586 M. Zachariadis


